Diffusion tensor imaging reveals white matter microstructure correlations with auditory processing ability.

نویسندگان

  • Vincent J Schmithorst
  • Scott K Holland
  • Elena Plante
چکیده

OBJECTIVE Correlation of white matter microstructure with various cognitive processing tasks and with overall intelligence has been previously demonstrated. We investigate the correlation of white matter microstructure with various higher-order auditory processing tasks, including interpretation of speech-in-noise, recognition of low-pass frequency filtered words, and interpretation of time-compressed sentences at two different values of compression. These tests are typically used to diagnose auditory processing disorder (APD) in children. Our hypothesis is that correlations between white matter microstructure in tracts connecting the temporal, frontal, and parietal lobes, as well as callosal pathways, will be seen. Previous functional imaging studies have shown correlations between activation in temporal, frontal, and parietal regions from higher-order auditory processing tasks. In addition, we hypothesize that the regions displaying correlations will vary according to the task because each task uses a different set of skills. DESIGN Diffusion tensor imaging (DTI) data were acquired from a cohort of 17 normal-hearing children aged 9 to 11 yrs. Fractional anisotropy (FA), a measure of white matter fiber tract integrity and organization, was computed and correlated on a voxelwise basis with performance on the auditory processing tasks, controlling for age, sex, and full-scale IQ. RESULTS Divergent correlations of white matter FA depending on the particular auditory processing task were found. Positive correlations were found between FA and speech-in-noise in white matter adjoining prefrontal areas and between FA and filtered words in the corpus callosum. Regions exhibiting correlations with time-compressed sentences varied depending on the degree of compression: the greater degree of compression (with the greatest difficulty) resulted in correlations in white matter adjoining prefrontal (dorsal and ventral), whereas the smaller degree of compression (with less difficulty) resulted in correlations in white matter adjoining audiovisual association areas and the posterior cingulate. Only the time-compressed sentences with the lowest degree of compression resulted in positive correlations in the centrum semiovale; all the other tasks resulted in negative correlations. CONCLUSIONS The dependence of performance on higher-order auditory processing tasks on brain anatomical connectivity was seen in normal-hearing children aged 9 to 11 yrs. Results support a previously hypothesized dual-stream (dorsal and ventral) model of auditory processing, and that higher-order processing tasks rely less on the dorsal stream related to articulatory networks and more on the ventral stream related to semantic comprehension. Results also show that the regions correlating with auditory processing vary according to the specific task, indicating that the neurological bases for the various tests used to diagnose APD in children may be partially independent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure of Temporo-Parietal White Matter as a Basis for Reading Ability Evidence from Diffusion Tensor Magnetic Resonance Imaging

Diffusion tensor magnetic resonance imaging (MRI) was used to study the microstructural integrity of white matter in adults with poor or normal reading ability. Subjects with reading difficulty exhibited decreased diffusion anisotropy bilaterally in temporoparietal white matter. Axons in these regions were predominantly anterior-posterior in direction. No differences in T1-weighted MRI signal w...

متن کامل

White Matter Microstructure is Associated with Auditory and Tactile Processing in Children with and without Sensory Processing Disorder

Sensory processing disorders (SPDs) affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually ...

متن کامل

Altered white matter microstructure underlies listening difficulties in children suspected of auditory processing disorders: a DTI study

INTRODUCTION The purpose of the present study was to identify biomarkers of listening difficulties by investigating white matter microstructure in children suspected of auditory processing disorder (APD) using diffusion tensor imaging (DTI). Behavioral studies have suggested that impaired cognitive and/or attention abilities rather than a pure sensory processing deficit underlie listening diffi...

متن کامل

Evaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies

Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...

متن کامل

Diffusion Tensor Imaging of the Auditory Neural Pathway for Clinical Outcome of Cochlear Implantation in Pediatric Congenital Sensorineural Hearing Loss Patients

Although conventional structural MRI provides vital information in the evaluation of congenital sensorineural hearing loss (SNHL), it is relatively insensitive to white matter microstructure. Our objective was to evaluate possible changes in microstructure of the auditory pathway in children with congenital sensorineural hearing loss (SNHL), and the possible distinction between good and poor ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ear and hearing

دوره 32 2  شماره 

صفحات  -

تاریخ انتشار 2011